		£\$.5.	Substitution	Rule	(U-Sub)
Recall	the	notation	differential	s ih	£3.10 (2A)
	U=0	DW U(X),	then du	= u'(x)	dx

eg. U= cosing, du= coso.do

 $u = 1 + \chi^2$, $du = 2\chi \cdot d\chi$

U-sub: A method to (simplify)
definite integral via CHANCING DO

INTEGRATION VARIABLE

Formula: If u = g(x), then $\int f(g(x)) \cdot g'(x) dx = \int f(u) \cdot du.$ $ug | y \text{ and complicated} \qquad \text{peat and clean}.$

Three Types (Basic Types) + Two special sub.s

(1) $\int e^{5x} dx$, $\int \sqrt{2x+1} dx$.

2) \int 2\times \sqrt{\chi^{2}+1} d\times and \int x^{3} \cos(\chi^{4}-2) d\times

 $\Im\int\chi^5\sqrt{\chi^2-2}\cdot\mathrm{d}\chi$

4

(4) I tank dx. (trig - Sup)	for l
5) \(\frac{3(\lambda\chi)^2}{\times} d\chi \) \(\text{c (ln-Suh)} \)	
\mathcal{D} . $\int e^{5x} dx$.	
Step 1: Set U=5x.	
Seep 2: differential: du=5dx.	
Stop 3: Solve for dx: dx= du	
Stop 4: Phys in: (Replace all "X-terms" via " u-terms"	' <u>)</u>
Jesx. dx = Jen. dx = Jt.en.du	
Step 5: integrate (with respect to U)	
$= f \cdot e^{u} + C.$	
Step b: Back to X . $= \boxed{\frac{1}{5} \cdot e^{5x} + C}$	
JoEX+1 dx, w=2x+1, du=z.dx	
$\int dx + \int dx, \qquad u=2x+1 , du=2\cdot dx$ $= \int du, dx = du$ Plug in	
= \frac{1}{2}. \frac{1}{2} du	
$= \pm \cdot \pm \cdot \cdot \cdot \cdot \cdot + C = \pm \cdot \cdot \cdot \cdot + C = \pm \cdot \cdot \cdot \cdot + C = \pm \cdot \cdot \cdot \cdot \cdot + C = \pm \cdot \cdot \cdot \cdot \cdot \cdot + C = \pm \cdot \cdot \cdot \cdot \cdot \cdot \cdot + C = \pm \cdot \cdot$	- -+-(

3. U-sub: "U stands for Ugly".
Jex. Jet 1 dx en set up u=x+1 e wyly pm
= f 2x. Tu. du Pheg in du = 2x. dx different
= $\int Ju du$ solve for $dx = \frac{du}{2x}$.
$=\frac{1}{2}+1.4$ + $C=\frac{3}{2}$ $U^{\frac{3}{2}}+C$
$=$ $\left[\frac{2}{3} \cdot (\chi + 1)^{\frac{3}{2}} + C\right]$
$\int x^3 \cdot \omega s(x^4-2) dx$ Set $\omega = x^4-2$
$=\int x^3 \cos(2\pi u) \cdot \frac{du}{4x^3}$ They in
$= \int \frac{du}{dx} = dx,$
= f.shu + C
$= \left(\pm \sin(x^4 - 2) + C \right)$

 $\int_{-\infty}^{\infty} \sqrt{x^{2}-2} dx$ 林俊③ $u=x^2-2$ $du = 2x \cdot dx$ $=\int x^{2}.\sqrt{u}\cdot\frac{du}{2x}$ du = dx (now new problems) appears: X's and ZX cannot be canceled at somethy. So, simplify first) but still, we can kill $= \int_{-\infty}^{\infty} \frac{x^{4}}{2} \cdot \sqrt{u} \cdot du$ there is a "x" left, try to substitute this pare by u. = ((u+2)2, Ju. du via 0 4= x-2 Solve for X, X=U+2 = (12.(12+44+4). 12 du Rig in) $\chi^{4} = (u+2)^{2}$ = (± · u = + 2 u = + 2 u = du = \frac{1}{2} \frac{1}{2+1} U + 2 \frac{1}{2+1} \U + 2 \frac{1}{2+1} \U + 2 \frac{1}{2+1} \U + C = + 4 + 4 · 1 + 4 · 1 + C $=\frac{1}{7}(\hat{x}-2)^{\frac{7}{2}}+\frac{4}{5}(\hat{x}-2)^{\frac{5}{2}}+\frac{4}{5}(\hat{x}-2)^{\frac{5}{2}}+C$

4

$$4D \int tax \cdot dx$$

$$= \int \frac{shx}{shx} \cdot dx$$

$$= \int -\frac{t}{t} dt + C$$

$$= -\ln|cosx| + C$$

 $tan X = \frac{shN}{cosX}.$ $U = cosX \qquad (Q: why hot U=shN)$ du = shX.dx. $\frac{du}{sinX} = shX.$

do trig-algebra first.

 $\int \frac{3(hx)^{3}}{x} dx$ $= \int \frac{3u^{2}}{x} du$ $= \int \frac{3u^{2}}{x} du$ $= \int \frac{3u^{2}}{x} du$ $= (hx)^{3} + C$

Pay attention to the combination of lox and \pm , show $(\ln x)' = \pm$ So $u = \ln x$, then $du = \pm dx$,

 $\int_{1}^{2} \frac{3(\ln x)^{3}}{2\pi} dx = (\ln x)^{3} \Big|_{1}^{2}$ $= (\ln x)^{3} - (\ln x)^{3} = (\ln x)^{3}$ $= (\ln x)^{3} - (\ln x)^{3} = (\ln x)^{3}$ $\int_{1}^{2} \frac{3(\ln x)^{3}}{2\pi} dx = \int_{\ln x}^{\ln x} 3u^{2} du = u^{3} \Big|_{\ln x}^{\ln x} = (\ln x)^{3}$

$$= \int \dot{x} \cdot e^{ix} \frac{dx}{-2ix}$$

$$=\int_{0}^{1}-\dot{z}\cdot e^{u}du$$

Alternotive approach:

$$=\int_{-2}^{2} du = \frac{e^{4}}{2}$$

then
$$u(0) = 0$$
, $u(1) = -1$

$$du = -2x \cdot dx$$

$$du = 1$$

$$\frac{dy}{2x} = dx$$
.

the change of variable
$$u=-x^2$$

send the lower and upper limit
 $x=0$, $x=1$ to the new
 $limit$ $u(0)=0$ and $u(1)=-1$

$$u=-x$$
, $du=-xxdx$
 $dx=dx$.

$$=\frac{e^{2x}}{-2}$$

	substitute the linear function inside Trig-funcion.
eg.	2) C). in Sample Midterm 1. SALTO+5 200, 4=70+5.
(12 Sec 20 da, U=20, du=2.da
	53. Sowifit) dt, u= 2, du= 3 dt
★ (5)	12 $\int \sec^2 20 d\theta$, $u=2\theta$, $du=2\cdot d\theta$ 53. $\int_{0}^{1} \cos^2(\frac{xt}{2}) dt$, $u=\frac{xt}{2}$, $du=\frac{x}{2} dt$ 57. $\int_{0}^{x} \sec(t\frac{x}{4}) dt$, $u=\frac{x}{4}$, $du=\frac{dt}{4}$
	[xx] \ \int \ \sin(\frac{22t}{7} - \times) dt, \(u = \frac{22t}{7} - \times, \ du = \frac{22}{7} dt
	T, X are constants.

Lemma. The Land St.; I say all problems of trigonages and the land of the land

Substitute unch inverse trig-function $u = tan^{T} x$, $u = sh^{T} x$ will appear

substitute the function linside Trig. function,

 $\int \frac{\sec^2(x)}{x^2} dx$

 $u=\frac{1}{x}$, $du=-\frac{1}{x}dx$

7. | x-sin(x²) dx.

u=2, du=2.xds.

16 Jex. 68(ex) dx

u=ex, du=ex.do

du= j·x-z dx

二支、炭、瓜

24. J. S. S. M H x =) dx.

W=1+X32

如一意义之处

= 爱. 灰.畝

32. $\int \frac{\sin(\ln x)}{x} dx$, $u=\ln x$,

du= \forall dx.

u=蚕,du=x(-友)dx=-不如

34. $\int \frac{\cos(x)}{x^2} dx$, $u=\overline{x}$, du=x(-x)42. $\int \sin t \cdot \sec^2(\cot t) dt$, $u=\cot t$, $du=-\sin t \cdot dt$

29. Ist sinst dt, 125t,

du= Ins. 5t dt

62. Jusx. sh(six)dx, u=six,

due wx.dx.

sInto 62. Jacx. sintsix) of = Jaintenx) words

= Sonu. du

 $=-(\omega_2(sin_2))^{\frac{\pi}{2}}=-(\omega_2(sin_2))-(-(\omega_2(sin_2))$

=-(03)+(03)=-(00+)

Substitution with Inverse Thy function

(Rink: whenever you see inverse trig functions, set a good to them u= tantx, du= 1/1x clx $\int 30 \int \frac{\tan x}{1+x^2} dx$ 8 43. J. Shtx 70. J. Shtx dx, u=shtx, du= Ladx. u=shtx, du= its dx. sln to 70: 10 mix dx = 5th u.du = 5th udu 二是次 = 主、会了一手·0

= 2 ×

&. Alway substitute [InX] $21. \int_{1}^{\infty} \frac{(\ln x)}{x} dx$ $32. \int_{1}^{\infty} \frac{(\ln x)}{x} dx$ duelnx, due todx. 69. 1 ×

state of. = let the take = line to du = lite du = 21/2 | = 2.42 -2.12

substitution relate to exponential function.

* [31 Setanx. secx dx, u=tanx, du=secx.dx]

* [28 Secart. sntdt. u=cost, du=-gntdt. sln to 60: = Jm e. = 5 = 5, endu =-をですき、※ 16 Sex (08/ex) dx. U=ex, du=exdu 7 Sex Thex dx. V=1ex, dv=-exdu 25 Sex Thex dx. V=1ex, du=exdx 71. Sex+3 dz, v=02+3, du=(ex+1)dz.

sinto 7 Sempodu = S(1-en)2. endu = Sorti. (-Odv) = -Sovedv = -(-v')+C = (1-en)1+C. Substitution Rule Classification of Problems (Exxin 7th Edition)

权励

substitute the "thing" under (squte) toot.

2). a). in Sample midtermx. [X.13x2-1 dx.

\$55. 3. $\int x^2 \sqrt{x^3+1} \, dx$, $u=x^3+1$. $du=3. x^2.dx$ 11. $\int x\sqrt{3x^2+1} \, dx$, $u=3x^2-1$, $du=6.x \, dx$ 14. $\int u\sqrt{1+u^2} \, du$, $V=1-u^2$, $dV=-2u \, du$ 55. $\int_0^2 \sqrt{1+7}x \, dx$, u=1+7x, du=7.dx64. $\int_0^a x\sqrt{x^2+2} \, dx$, $u=a^2-x^2$, $du=-2x \, dx$ 65. $\int_0^a x\sqrt{x^2+2} \, dx$, $u=x^2+a^2$, $du=2.x \, dx$

sln to 63: $\int_{0}^{3} \frac{do}{3\sqrt{(H+2X)^{2}}} = \int_{u_{0}}^{u_{0}} \frac{1}{3\sqrt{u^{2}}} \cdot \frac{du}{2} = \frac{1}{2} \int_{1}^{3} u^{-\frac{2}{3}} du$ $= \frac{1}{2} \cdot 3 \cdot u^{\frac{1}{3}} \Big|_{1}^{2} \Big|_{1}^{2}$ $= \frac{3}{2} \cdot 27^{\frac{1}{3}} - \frac{3}{2} \cdot 1^{\frac{1}{3}} = 3$

② \$55. 25.
$$\int e^{x} . \sqrt{he^{x}} dx$$
, $u=1+e^{x}$, $du=e^{x} dx$

$$= \int \sqrt{u} . du$$

$$= \frac{2}{3} u^{\frac{3}{2}} + C$$

$$= \frac{2}{3} (1+e^{x})^{\frac{3}{2}} + C$$

$$69. \int e^{\frac{a}{x}} . dx$$

$$= \int dx$$

$$= \int \sqrt{u} . u=hx, du=\frac{1}{2} dx$$

$$= \int \sqrt{u} . u=he^{\frac{a}{2}} = 4$$

$$= -\frac{1}{2} + 1 \cdot u^{-\frac{1}{2}+1} / 4 = 2u^{\frac{1}{2}} / 4 = 2\sqrt{4} - 2 \cdot 1 = 2$$

$$\Rightarrow \text{ Substitute dia. "Ugly Part" under the "Paver"}$$

$$= \int \sqrt{x^{2}(2+x^{4})^{2}} dx \quad u=2+x^{2} dx \quad u=4+x^{2} dx$$

$$= \int \sqrt{(1-2x)^{9}} dx \quad u=1-2x \quad du=-2dx$$

$$\Rightarrow \int \sqrt{(1-2x)^{9}} dx \quad u=1-2x \quad du=-2dx$$

$$\Rightarrow \sqrt{(1-2x)^{9}} dx \quad u=1-2x \quad du=-2dx$$

| 54 \ \int \text{Bt/150 dt } u=3t-1 \ du=3dt

in the "denominator"
which is actually a "regotive" power) substitute the they

4.
$$\int \frac{dt}{(1-6t)^4}$$
, $u=1-6t$, $du=-6.dt$
13. $\int \frac{dx}{t-3x}$, $u=5-3x$, $du=-3.dx$
26. $\int \frac{dx}{ax+b}$, $u=ax+b$, $du=a.dx$.
56. $\int_{0.5x+1}^{3} \frac{dx}{5x+1}$, $u=5x+1$, $du=5x+1$.
20 $\int \frac{z^2}{z^3+1} dz$, $u=z^3+1$, $du=3.z^2 dz$.

A & & following problems still have the "voot" or "power" part, but extra transformation needed. (partial sln provided here, complete sln can be found in anal! 146. J2 J2+X · dx.

sln: u=2+x. $\Rightarrow x=u-2$, $\int x^2 \sqrt{x} dx = \int (w-2)^2 . \sqrt{u} . du$

= S(v-444). u= du

= Ju2+ 2 - 4. W+ 2 + 4. W du

= (not finished ypt)

 $\frac{1}{\sqrt{10}} \sqrt{\frac{u=x^2+1=x^2=u-1}{4u=2\cdot x dx}} \int x^2 \cdot x \cdot \sqrt{x^2+1} dx$

 $= \int_{\mathcal{X}} \sqrt{x_{+1}} \cdot x dx$

= S(W1). Tu. du = (to be appliced)

67. \(\int_{x\sqrt{x-1}} \dx \) \(\frac{u=x+=> x=u+1}{du=dx} \int_{x-1}^{2-1} \) (u+1) \(\sqrt{u} \) \(\du = \int_{0}^{2} \) (u\tau + \tau \) \(\du = \int_{0}^{2} \) (u\tau + \tau \) \(\du = \int_{0}^{2} \) (u\tau + \tau \) \(\du = \int_{0}^{2} \) (u\tau + \tau \) \(\du = \int_{0}^{2} \)